Classification of hyperspectral images by tensor modeling and additive morphological decomposition

نویسندگان

  • Santiago Velasco-Forero
  • Jesús Angulo
چکیده

Pixel-wise classification in high-dimensional multivariate images is investigated. The proposed method deals with the joint use of spectral and spatial information provided in hyperspectral images. Additive morphological decomposition (AMD) based on morphological operators is proposed. AMD defines a scale-space decomposition for multivariate images without any loss of information. AMD is modeled as a tensor structure and tensor principal components analysis is compared as dimensional reduction algorithm versus classic approach. Experimental comparison shows that the proposed algorithm can provide better performance for the pixel classification of hyperspectral image than many other wellknown techniques. & 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameters selection of morphological scale-space decomposition for hyperspectral images using tensor modeling

Dimensionality reduction (DR) using tensor structures in morphological scale-space decomposition (MSSD) for HSI has been investigated in order to incorporate spatial information in DR. We present results of a comprehensive investigation of two issues underlying DR in MSSD. Firstly, information contained in MSSD is reduced using HOSVD but its nonconvex formulation implicates that in some cases a...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

l’École nationale supérieure des mines de Paris

This thesis contributes to the field of mathematical morphology and illustrates how multivariate statistics and machine learning techniques can be exploited to design vector ordering and to include results of morphological operators in the pipeline of multivariate image analysis. In particular, we make use of supervised learning, random projections, tensor representations and conditional transf...

متن کامل

Improvement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra

Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...

متن کامل

Separation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image

The application of anomaly detection has been given a special place among the different   processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2013